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 Ensemble-based Debiasing Methods



I The Impressive Performance of ML Models

Accuracy
Model Train Test
Human Performance (Estimated) 97.2% 87.7%
DR-BiLSTM (Single) 94.1% 88.5%
DR-BiLSTM (Single)+Process 94.1% 88.9%
DR-BiLSTM (Ensemble) 94.8% 89.3%

DR-BiLSTM (Ensem.)+Process  94.8%

89.6 %

Natural Language Inference

Even outperform human on the SNLI dataset

Identify signs of diabetic retinopathy (#FR f&+1 M f& %25

> 90% accuracy (comparable with experts),
< 10 minutes’ v.s. 1 month (human)

Picture source: https.//www.wallingfordeyes.com/eye-health/eye-diseases/107-diabetic-retinopathy
1 A Human-Centered Evaluation of a Deep Learning System Deployed in Clinics for the Detection of Diabetic Retinopathy, CHI’20, April 25-30, 2020



I Failures in Real Applications

When ML models went out of the training environment, significant drop in performance occurs

New evidence, from Andrew Ng.

https://spectrum.ieee.org/andrew-ng-xrays-the-ai-hype

“It turns out [that when] you take that same model, that same Al system, to an older hospital down the
street, with an older machine, and the technician uses a slightly different imaging protocol, that data drifts
to cause the performance of Al system to degrade significantly. In contrast, any human radiologist can
walk down the street to the older hospital and do just fine. ...”

“All of Al, not just healthcare, has a proof-of-concept-to-production gap," he says. “The full cycle of a
machine learning project is not just modeling. It is finding the right data, deploying it, monitoring it,
feeding data back [into the model], showing safety—doing all the things that need to be done [for a
model] to be deployed. [That goes] beyond doing well on the test set, which fortunately or unfortunately

is what we in machine learning are great at.”



https://spectrum.ieee.org/andrew-ng-xrays-the-ai-hype

I Failures Iin Real Applications

«  When ML models went out of the training environment, significant drop in performance occurs
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Related Works: McCoy et al. Right for the wrong reasons: Diagnosing syntactic heuristics in natural language inference. ACL 2019



I Failures in Real Applications

«  When ML models went out of the training environment, significant drop in performance occurs

Identify signs of diabetic retinopathy (5 J& 1 X f& 5% )

> 50% images in poor lighting conditions were
rejected, even no pattern of disease

Related work: A Human-Centered Evaluation of a Deep Learning System Deployed in Clinics for the Detection of Diabetic Retinopathy, CHI’20, April 25-30, 2020



Failures in Real Applications

«  When ML models went out of the training environment, significant drop in performance occurs

Detect COVID-19 by CXR and CT

None of 62 machine learning models is of potential
clinical use

"Any machine learning algorithm is only as good as the data it’s trained on.

Related work: Common pitfalls and recommendations for using machine learning to detect and prognosticate for COVID-19 using chest radiographs and CT scans, Nature Machine
Intelligence, 2021



Challenges of ML in the Application

Robustness

Generalizability Interpretability

“Yield Sign”

Authentic Adversarial Adversarial
Input Perturbation Input

</21%4/> </82%//>
{‘OBJECTTEXT' | {'OBJECTTEXT

o/ 1 i [LAST\\\> [HEAD()]
> 50% images in poor )
lighting conditions

|
|
l
|
|
|
|
|
|
were rejected :

Poor performance in Deep NN remains a Sensitive to the noise
OOD (out-of-distribution) black box to human and easy to attack

Related Works: A Human-Centered Evaluation of a Deep Learning System Deployed in Clinics for the Detection of Diabetic Retinopathy, CHI’20, April 25-30, 2020;
Pics source: www.topbots.com/interpretable-machine-learning/; Detecting Adversarial Inputs by Looking in the black box, 2019



http://www.topbots.com/interpretable-machine-learning/

I Decades Efforts on These Problems

« Methods combating these problems including
« Transfer learning
« Data augmentation
* Robust training
« Causal machine learning

* Debiasing

What is Debiasing?



The Dependence on Spurious Correlations
(Dataset Bias)

» Debiasing: to mitigate model's reliance on Dataset bias

Heuristic Supporting Contradicting
Cases Cases ,
“Entailment”
Lexical overlap 2,158 261 “Neutral”
Bias features Subsequence 1,274 72 “Contradiction”
Constituent 1,004 58

Training P: The little boy is happy. high

—— entailment
set H: The boy is happy. word-overlap



The Dependence on Spurious Correlations
(Dataset Bias)

» Debiasing: to mitigate model's reliance on Dataset bias

Heuristic Supporting Contradicting
Cases Cases
Lexical overlap 2,158 261
Subsequence 1,274 72
Constituent 1,004 58

P: The doctor saw the author
and the tourist. —_—

H: The author saw the tourist.

Test high

—  entailment x
word-overlap



The Dependence on Spurious Correlations
(Dataset Bias)

Article: Super Bowl 50

Paragraph: “Peython Manning became the first quarterback
ever to lead two different teams to multiple Super Bowls. He
is also the oldest quarterback ever to play in a Super Bowl
at age 39. The past record was held by John Elway, who
led the Broncos to victory in Super Bowl XXXIIl at age 38
and is currently Denver’s Executive Vice President of Foot-
ball Operations and General Manager. Quarterback Jeff
Dean had a jersey number 37 in Champ Bowl XXXIV."

Question: “What is the name of the quarterback who was
38 in Super Bowl XXXIII?"

Original Prediction: John Elway
Prediction under adversary: Jeff Dean

Task Caption image Recognise object Recognise pneumonia Answer question
Probl Describes green Hallucinates teapot if cer-  Fails on scans from Changes answer if irrelevant
feletiln. hillside as grazing sheep tain patterns are present new hospitals information is added
Bias Uses background to Uses features irrecogni- Looks at hospital token, Only looks at last sentence and
recognise primary object sable to humans not lung ignores context

Picture source: Geirhos, R., Jacobsen, JH., Michaelis, C. et al. Shortcut learning in deep neural networks. Nat Mach Intell 2, 665-673 (2020)



I The Effects of Spurious Correlation

Generalizability Interpretability & Robustness

Colored MNIST

:

Training

Test

Spurious correlations are prone to Use features unrecognizable to humans
change on the test set

Geirhos, R., Jacobsen, JH., Michaelis, C. et al. Shortcut learning in deep neural networks. Nat Mach Intell 2, 665-673 (2020); Adversarial Examples Are Not Bugs, They Are Features. NeurlPS
2019;



I Debiasing: reliance the effect of Dataset Bias

NLU

Bias in Datasets

QA/NQA

(

Dataset Bias

(A. Torralba and A. A. Efros. CVPR 2011)

Image Classification

L

Debias methods

Ensemble-based
debiasing (EBD)

widely used

make use of bias-

only models
Causality- rely on specific causal
based graph of the task
Worst-case
optimization rely on groups

few studies focus on
the bias-only models



I Ensemble-based Debiasing Framework

A 4

Training Bias-only N I
Data model 0SS




I Ensemble-based Debiasing - Example

» Debiasing: to mitigate model's reliance on Dataset bias

Training P: The little boy is happy. high entailment V
set H: The boy is happy. word-overlap

P: The doctor saw the author hiah
Test and the tourist. — o d-logverla ——  entailment x
H: The author saw the tourist. P



I Ensemble-based Debiasing - Example

« Use a bias-only model

Training P: The little I_ooy is happy. high entailment
set H: The boy is happy. word-overlap
/feature extraction\
Constituent ‘[ model ]- N
hypothesis The boy is happy. C

Lexical overlap
S /




I Bias-only Models

Bias-Known: we have prior knowledge about bias features

« Syntactic bias based Classifier

[feature extraction\
premise [ The little boy is happy Sub-sequence

Constituent

m

NLI
.[ model ]- N

hypothesis The boy is happy.

Lexical overlap
S -/

* Hypothesis-only Classifier

only input the hypothesis The little boy is
sentence happy

E

NLI I
model N
C




I Improvements on Bias-only Models

« Bias-Unknown: no identified bias features, using other assumptions

« Low-capacity model (Clark et al. 2020)
“short-cuts”

« Early-stage model (Utama et al. 2020)

Previous work focus on dataset bias other than bias-only model itself



I Ensemble-based Debiasing Framework

Training
Data
—

Stage 2

1 Bias-only
model

Main

test stage

model

loss

Prediction

loss



I Ensemble Strategies

CE loss

Product * Product methods minEx yp,|Lc(Y,m(q’(X) - q™(X))],
PoE, DRIiFt,

fm

. ® Product-of-Experts: probability output
Learned-Mixin

* DRIFt: exponential of the logits output

CE loss

Reweight, 1 m
"CC(Ya p (X))]v

) . ° -wei nEx y~
inverse reweight Re-weight methods 1 x,y IEDD[;&;,(X,

® Inverse reweight: probability output

Previous work focus on training unbiased model given bias-only model



I Contents

» Motivation
* Why bias-only models?
* Why calibration?



I Ensemble Strategies

Product
PoE, DRIiFt,

Learned-Mixin

Reweight,
inverse reweight

=

p

m*

X

Pp(Y | X)

pb

the uncertainty estimation
of the bias-only model

The best main model relies on the uncertainty estimation of the bias-only model !



I Theoretical Basis of EBD

«  The signal and bias

Y =0
X?: the shape “0”

C < XB: the color green

X

Pp(Y|X®) = Pp(Y|X"),VD,D  Theintrinsic (invariant) principle

IPD(Y\XB) usually changes across different D



I Theoretical Basis of EBD

The decomposition

1

Pp(Y | X =z) o Pp(Y | X7 = 2")Pp(Y | X° = 2°) Pp(Y)

E.g. Conditional independence X1 X5 \ Y

Pp(Y | X
P o D(pb‘ ) » When pbocIP’p(Y\XB), pm*ocIP’p(Y|XS)



I The Calibration Problem

Modern machine learning models are poorly calibrated, many are overconfident (Guo et al. 2019)

1.U
Bl Observed Accuracy

0.8
H:Dmodel(label = llX) ~ 0.85
§0.6-
5 P[real label = i|P,, ,;(label = i|x) = 0.85)] = 0.65
Z 0.4

The confidence of model is higher than its accuracy!
------ “over confident’(otherwise, lower)

04 0.6

Confidence




I Evidence: Poorly Calibrated Bias-only Models

1.0

Bl Observed Class Portion
| T Gap (ECE=7.12)

B Observed Class Portion
| T3 Gap (ECE=9.83)

0.8 0.8
§‘0.6 § 0.6
O O
= =
D D
F041 | R

0.0 1 f ‘ ‘ : ‘
00 02 04 06 08 1.0 00 02 04 06 08 1.0

Predict Probability Predict Probability
(2) MNLI (b) FEVER

Bias-only models in EBD methods are poorly calibrated



I The Importance of Calibration

Theorem 1 (debiasing performance)

The out-of-distribution accuracy of the debiased model is monotonically decreasing

with the calibration error of the bias-only model when such error exceeds a
threshold

Theorem 1. For any | € [0,1], assume that 3y s.t. Pp(Y = 0|XB)e(lg — €,1o + €) when X
takes values in Sy, (1). If the calibration error || — Pp(Y = 0|S¢z (1)) > 0(lo,€,) > 0, the

debiasing performance Pp({x € Sy, (1)|Y (z) = Y (x)}) declines as |l — IP’D( = O|SfB D)|
increases, where §(lg, €, ) is a constant dependent with ly, € and o. When o < = —|— 3y (1= lo) 5T

0 < 6(lo, €, oz) < 26, where 2¢ < a5 < 1. Otherwise C < 6(lo, €, @) < 2¢ + C, where

—— _ lo+e
0<C =l ~ GroTi-lo—ag = which increases as o increases.




I The Importance of Calibration

Theorem 2 (In distribution performance)

Theorem 2. Forany X, Y (X) # Y (X) if and only ifp;’?(w) (z) > Pp(Y =Y (z)| X = z).

The in-distribution error is non-decreasing as the range of the uncertainty
estimation of bias-only models increases

An important case: when the bias-only model is over-confident, decreasing its
calibration error can improve both the in-distribution and out-of-distribution
performance of the debiased model according to the two theorems




I Contents

 Method and Experiments
« 3 stage
« Improvements and verification



I Our Framework: MoCaD

Stage 3

Stage 1
TrSining " Bias-only " |
ata model _ _ 0SS
_— calibration
Main N loss
model
test stage Prediction




I Our Framework: MoCaD
° Temperature Scaling (Guo, 2017)
L= % ; Toglossia(z/T) )

° Dirichlet (Kull, 2019)

Apirin(d; W, b) = 0o(Wlnq + b)

1 & ) X 1
L= =Y loglos(fpyLm(P(x:); W, b), ;) + A- > wl
n < k(k—1) o



I Experiment: Datasets

Task Considered Bias Train set IID dev set OOD test set

Syntactic HANS
: MNLI-Hard-CD
NLI Hypothesis-only MNLI MNLI MNL I-Hard-SP
Unknown HANS
Fact : FEVER-Symm v1
Verification |~ ~i@im-only | FEVER | FEVER | cpvER Symm v2




I Experiment: Metrics for Calibration

* Class-wise Expected Calibration Error (Class-wise ECE)

|B

“ly;i(Bij) — pj(Bij)|

classwise—ECE = — Z Z

le

Difference between average prediction of class j probability
and the actual proportion of class j in the bin B; ;



I Experiment: Calibration Results

° Bias-only models after calibration ...

FEVER HANS MNLI Unknown
Un-Cal 7.11 9.83 3.01 7.41
TempS 6.23 770  2.38 3.07
Dirichlet 1.73 4.47 0.87 1.45

Classwise-ECE used to measure the performance of calibration, the lower the better

Classwise-ECE significantly drops on all datasets illustrate the effect of TempS & Dirichlet



| Experiment: Results on FEVER

In-distribution

Test (out-of-distribution)

Method ID Symm. vl Symm. v2
CE 87.1 06 56.5 +09 63.9 +09
PoE 84.0+10 62.0+13 65.9 o6
PoEemps 82.0+09 63.3+09 66.4 +0.38
PoEpirichiet 87.1 +10 659 +1.1 69.1 + o038
DRiFt 842 +12 623 +15 659 +o07
DRiFtremps 81.7+09 63.5+13 66.5 +0.7
DRiFtpiricne 874 +12 65.7 +14 69.0 +13
InvR 84.3 +08 60.8 +12 65.2 +1.0
InVR temps 83.8+06 61.5+09 65.4 +o07
InvRpirichlet 87.0 +08 63.8 +22 68.2 + 17
LMin 84.7 +18 59.8 +27 653 +1.1
LMintemps 84.9+17 60.0+25 65.6 +£15
LMinpirichiet 87.5+11  61.5 +24 67.1 +13

Consistently better performance in OOD and Dirichlet is a better one




I Experiment:

Results on MNLI-HANS/MNLI-Hard

Test (out-of-distribution)

Syntactic Bias

Unknown Bias

Hypothesis-only Bias

Method ID | HANS | ID  |Hardep Hardsp ‘ ID | HANS

CE 842 +02 612+32|842+02 76804 72620 |842+02 61.2=+32
PoE 82.8 +04 68.1 £34[832+02 794 +04 768 £24 ] 80.7+02 69.0+24
PoEtemps 839 +03 69.1 +28 |829+03 79.6+04 774 +24|821+02 699 +16
PoEpirichlet 84.1 +03 70.7 +15 | 827 +t04 794 +02 77.6+21 | 823 +03 70.7+10
DRiFt 81.8 +04 66.5+40 | 83.5+04 79.5+06 763 +16]80.2+03 69.1 £13
DRiF tremps 83.0 +04 69.7 +18 | 83.1 +t02 79.6+02 774 +33|81.5+03 70.0+09
DRiFtpirichiet 83.6 +03 69.8 +19 | 82.8 +03 79.6 +02 79.0 +16 | 81.9 +t06 694 +1.1
InvR 82.5+01 684 +12|83.1+02 784 +05 77.1 +20] 78.7 +48 64.7 £26
InVRtemps 83.6 +t02 694 +16 | 828 02 786 +02 779 +17|81.4+05 658 +09
InvRpirichiet  83.7 +04 694 +13 | 825 +02 789 +t04 80.8 £20 | 81.5+02 68.2 +03
LMin 84.1 +03 65.5 +37 | 80.5+03 80.0+04 782 +20]83.1+03 665 +1.1
LMintemps 84.1 +02 632 +27|805+06 803+02 80.8+36]|83.3+02 66.2+10
LMinpisichiet 84.3 +03 62.7 +26 | 80.1 £t05 79.8 04 83.2+22 | 82.7+02 664 +12

Consistently better performance in OOD and Dirichlet is a better one



Empirical Verification of Theorem 1 (On debiasing

(a) FEVER (b) MNLI
70
72
68 71 '\
- .’.
o 70 \ .
S 66 | o / \
= “".\ (7 o—0
3 “®-q 69 \o\
< 64 o s
..,'. 68
....... Symm. Vl .'.-......
@
62 Symm. v2 *| 97| —e— HANS
66
2 3 4 5 6 7 5 6 7 8

Classwise-ECE

Debiasing performance of bias-only model decreases as the classwise-ECE goes up



Empirical Verification of Theorem 2 (On IID
performance)

(a) Syntatic Bias (b) Hypothesis-only Bias

0.84 0.84 ——eo—*
©
- /,/
/./‘/ o—°
5 0.83 . 0.83 /
g 7 .
; V. 4
Q
< /. /
0.82 / 0.82 | 4
¢
0.81 0.81
0.7 0.9 1.1 1.3 1.5 0.7 0.9 1.1 1.3 1.5
Temperature

Bigger temperature -> lower confidence -> better in-distribution performance



Empirical Verification: Over/under Confident

Method Syntactic Bias Hypothesis-only Bias Unknown Bias
ID HANS ID Hardcp Hardgp ID HANS
CE 84.2 +02 61.2 +32 | 84.2 +02 76.8+04 72.6+20 | 84.2 +02 61.2 +32
PoE 82.8 +04 68.1 +34 | 83.2+02 794 +04 76.8+24|80.7+02 69.0+24
PoEtemps 83.9+03 69.1 +28|829+03 79.6+04 77.4+24|82.1+02 699 +16
PoEp;richiet 84.1 +03 707 +15 | 82.7+04 794 +o02 77.6+21|82.3+03 70.7 +10
10 (a) Syntactic Bias 10 (b) Hypothesis-only Bias 10 (c) Unknown Bias
Il Observed Accuracy Il Observed Accuracy Il Observed Accuracy
] 1 Gap ] CJGap I 0.8 1 Gap

Accuracy

1000 02 04 06 08 1.0

04 0.6
Confidence

0.8

Figure 1: Reliability diagrams of the bias-only models on MNLI. On MNLI, (a) the syntactic bias-only
model and (c) the unknown bias-only model are over-confident, (b) the hypothesis-only bias-only
model is under-confident.

Calibration of over-confident bias-only benefits performance on both in and out of distribution
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Experiments on Image Classification

Table 2: Classification accuracy on image classification. Experiments on 9-Class ImageNet dataset

Method ID UnBiased ImageNet-A

PoE 946 +02 94.3 +03 31.8 +19 . o
PoEtemps 947 £03 94.5+03 31.9 +11 MoCabD can achieve the best debiasing
PoEpirichlet 94.6 £04 94.3 +o04 30.5 +12 performance among all EBD methods, but
DRiFt 946 +02 944+03  31.9 +0s the improvement is inconsistent.
DRiFttemps 948 +04 944 +04 32.5 +1.2

DRiFtpiricniet 94.5 02 94.3 +o02 324 +10

InvR 945 +04 94.1 tos 31.6 +03

InVR Temps 943 +01 93.8 +o1 32.2 +15

InvRpirichlet 944 +04 942 +02 31.8 +£09

LMin 90.9 +05 90.5 +o6 277 +16

LMintemps 91.1 £06 90.6 + 06 28.1 +138

LMinpirichiet 91.2 +02  90.9 +o02 26.1 +0.38




In Progress: Invariant learning for Debiasing

 Invariant learning for debiasing:
* Infer environments
 Minimize the loss with an invariance

penalty
o (A
n}len ARE(f,0) + - penalty({Se(f, 0)}665)
’ ec& (a) Inferred environment 1 (b) Inferred environment 2
(mostly) landbirds on land, and (mostly) landbirds on water,
waterbirds on water and waterbirds on land
* Problem:

» Optimal solution of Invariant learning may still rely on bias
» Unstable performance

* Our contribution:
* Prove necessary and sufficient conditions for the equivalence of invariant learning and
debiasing
* Propose a new method based on the theory
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