

Evaluating Natural Language Generation via Unbalanced Optimal Transport

Yimeng Chen, Yanyan Lan, Ruibin Xiong, Liang Pang, Zhiming Ma and Xueqi Cheng

Outline

Part 1 - A Brief Introduction

Part 2 - More Details

Part 1

A Brief Introduction

Part 1 - Outline

- Motivation
- 3 Highlights
 - Bridging by optimal transport
 - Matching problems
 - Lazy Earth Mover's Distance
- Experiment results
- Conclusion

Outline

- Motivation
- 3 Highlights
 - Bridging by optimal transport
 - Matching problems
 - Lazy Earth Mover's Distance
- Experiment results
- Conclusion

Outline

- Motivation
- 3 Highlights
 - Bridging by optimal transport
 - Matching problems
 - Lazy Earth Mover's Distance
- Experiment results
- Conclusion

Code and demo: https://github.com/Beastlyprime/lazy_emd

Motivation

Q: Which intrinsic metric is better for embedding-based NLG evaluation measures?

Natural Language Generation Evaluation

Je l'amie.

Embedding-Based Measures

Existing intrinsic metrics

Generalized precision/recall

- BERTScore (ICLR 2020)
- YiSi-1 (CMT 2019)

Earth mover's distance

- WMD (ICML 2015)
- WMDo (CMT 2019)
- MoverScore (EMNLP 2019)

Highlight

1

Bridging by Optimal Transport

Different HARD constraints

$$\min_{\mathbf{P} \in \mathbb{R}^{n \times m}_{+}} \langle \mathbf{C}, \mathbf{P} \rangle$$

s.t. $\mathbf{P} \mathbb{1}_{m} = \boldsymbol{\mu}, \mathbf{P}^{T} \mathbb{1}_{n} = \boldsymbol{\nu}. \longrightarrow EMD = \langle C, P^{*} \rangle$

•

s.t.
$$\mathbf{P}^T \mathbb{1}_n = \boldsymbol{\nu}. \longrightarrow R = \langle S, P_r^* \rangle$$

Highlight

2

Matching Problems

Existing Metrics Induce BAD match

1. Incomplete matching

2. Noisy matching

HARD Constraints, BAD Match

		Translations	Р	R	F	Lazy-EMD	
Example 1	reference candidate 1 candidate 2	The young man in a slicker. The boy in a coat. The man in a coat.	1 0.9560 0.9609	1 0.9419 0.9408	1 0.9489 0.9507	0 0.0533 0.0553	
Example 2	reference candidate 1 candidate 2	enceThe boy in a coat.idate 1The young man in a slickeridate 2The old man in a slicker.		1 0.9560 0.9574	1 0.9489 0.9447	0 0.0511 0.0525	
Captions						Lazy-EMD	
Example	reference 3 caption 1 caption 2	grass.	0 0.0738 0.0881	0 0.4301 0.3104			
Example 4referenceA boy climbs up the tree.Example 4caption 1A dog runs in the grass.caption 2A brave boy is climbing up a tall tree.						0 0.4301 0.3491	

Bad match — inconsistent evaluation

Highlight

3

Lazy Earth Mover's Distance

Lazy Earth Mover's Distance

$$\min_{\mathbf{P}\in\mathbb{R}^{n\times m}_{+}} \langle \mathbf{C}, \mathbf{P} \rangle + \lambda_{c} \mathrm{KL}(\mathbf{P}\mathbb{1}_{m} | \boldsymbol{\mu}) + \lambda_{r} \mathrm{KL}(\mathbf{P}^{T}\mathbb{1}_{n} | \boldsymbol{\nu}).$$

$$\downarrow \mathbf{P}^{*}_{\lambda_{c},\lambda_{r}}$$

$$\mathrm{Lazy}\mathrm{EMD}_{\lambda_{c},\lambda_{r}} = \langle \mathbf{C}, \mathbf{P}^{*}_{\lambda_{c},\lambda_{r}} \rangle$$

$$\begin{split} \mathrm{EMD} &= \mathrm{Lazy}\text{-}\mathrm{EMD}_{\infty,\infty},\\ P &= 1 - \mathrm{Lazy}\text{-}\mathrm{EMD}_{\infty,0}, \ \ R &= 1 - \mathrm{Lazy}\text{-}\mathrm{EMD}_{0,\infty}. \end{split}$$

That alleviate the incomplete and noisy matching problems!

Evaluation: WMT Translation Benchmark

• WMT19: 193 translation systems, 15 language pairs

n	cs-en -/27k	de-en 85k/100k	fi-en 38k/32k	gu-en 31k/11k	kk-en 27k/18k	lt-en 22k/17k	ru-en 46k/24k	zh-en 31k/19k
SENTBLEU	-/.367	.056/.248	.233/.396	.188/.465	.377/.392	.262/.334	.125/.469	.323/.270
P_{BERT}	-/.444	.156/.314	.326/.498	.307/.519	.419/.493	.375/.422	.212/.540	.410/.306
R_{BERT}	-/.494	.160/.351	.346 /.521	.295/.562	.416/ .541	.367/.449	.216/.577	.427/.352
F_{BERT}	-/.479	.166/.338	.344/.518	.313/.554	.434 /.532	.375/.448	.223/.572	.430/.347
YiSi-1	-/.486	.165/.345	.346 /.521	.317/.563	.433/.538	.373/.450	.225 /.575	.433 /.353
$F_{oldsymbol{lpha}}$	-/.495	.165/.351	.344/.522	.314/.563	.434/.541	.375/.449	.223/.578	.429/ .357
EMD	-/.479	.159/.338	.342/.523	.318 /.561	.432/.539	.377 /.455	.215/.566	.430/.343
Lazy-EMD	-/.498	.174/.356	.346/.526	.318/.569	.431/ .541	.377/.466	.215/ .582	.433 /.352

Conclusion

Existing intrinsic metrics

Part 2

More Details

Part 2 - Outline

- 3 Key points
 - From optimal transport problem to token matching
 - Matching problems and evaluation
 - Why the word 'Lazy' ?
- Our Demo: visualize intrinsic metrics
 - Example

1

From Optimal Transport to Token Matching

Optimal Transport Problem

- Earth of mass μ_i on site i
- Requirements of mass ν_i of factory j
- Transport cost from i to j : C_{ij}
- Make the transport plan, minimize the total cost.

Optimal Transport Problem

Solution P^* : optimal transport plan

EMD: Bilateral

Generalized Precision/Recall: Unilateral

Generalized Precision/Recall: Unilateral

Different HARD constraints

$$\min_{\mathbf{P} \in \mathbb{R}^{n \times m}_{+}} \langle \mathbf{C}, \mathbf{P} \rangle$$
s.t. $\mathbf{P} \mathbb{1}_{m} = \boldsymbol{\mu}, \mathbf{P}^{T} \mathbb{1}_{n} = \boldsymbol{\nu}. \longrightarrow EMD = \langle C, P^{*} \rangle$
s.t. $\mathbf{P} \mathbb{1}_{m} = \boldsymbol{\mu} \longrightarrow P = \langle S, P_{p}^{*} \rangle$
s.t. $\mathbf{P} \mathbb{1}_{m} = \boldsymbol{\mu}, \mathbf{P}^{T} \mathbb{1}_{n} = \boldsymbol{\nu}. \longrightarrow R = \langle S, P_{r}^{*} \rangle$

 P_{ij} : Matching weight of token i, j

2

Matching Problems and Evaluation

GOOD match?

 P_{ij} : how much the similarity of token pair (i, j) is considered in computing the final score.

In traditional evaluation measures like BLEU, ROUGE, the problem is the stiffness on matching

— only words lexically similar can be matched.

However in embedding-based measures, the problem is the flexibility

— ANY two words can be matched !

GOOD match?

 P_{ij} : how much the similarity of token pair (i, j) is considered in computing the final score.

What kind of match is bad?

- 1. Incomplete matching
- 2. Noisy matching

HARD constraints, BAD match

Reference: The young man in a slicker.

Candidate: The boy in a coat

- 1. Incomplete matching
- 2. Noisy matching

Unilateral: nearest neighbor

Bilateral: ideal only when $w_{man} + w_{young} = w_{boy}$ 3

Why the word 'Lazy' ?

OT with Soft Constraints

$$\min_{\mathbf{P} \in \mathbb{R}^{n \times m}_{+}} \langle \mathbf{C}, \mathbf{P} \rangle + \lambda_{c} \operatorname{KL}(\mathbf{P}\mathbb{1}_{m} | \boldsymbol{\mu}) + \lambda_{r} \operatorname{KL}(\mathbf{P}^{T}\mathbb{1}_{n} | \boldsymbol{\nu})$$

$$\min_{\mathbf{P} \in \mathbb{R}^{n \times m}_{+}} \langle \mathbf{C}, \mathbf{P} \rangle$$

$$\operatorname{s.t.} \mathbf{P}\mathbb{1}_{m} = \boldsymbol{\mu}, \mathbf{P}^{T}\mathbb{1}_{n} = \boldsymbol{\nu}.$$

$$\operatorname{marginal deviation, by KL divergence}$$

OT with Soft Constraints

$$\min_{\mathbf{P} \in \mathbb{R}^{n \times m}_{+}} \langle \mathbf{C}, \mathbf{P} \rangle + \frac{\lambda_c}{\lambda_c} \mathrm{KL}(\mathbf{P} \mathbb{1}_m | \boldsymbol{\mu}) + \frac{\lambda_r}{\lambda_r} \mathrm{KL}(\mathbf{P}^T \mathbb{1}_n | \boldsymbol{\nu}).$$
control how much the corresponding marginal deviation is penalized

Lazy Earth Mover's Distance

$$\min_{\mathbf{P}\in\mathbb{R}^{n\times m}_{+}} \langle \mathbf{C}, \mathbf{P} \rangle + \lambda_{c} \mathrm{KL}(\mathbf{P}\mathbb{1}_{m}|\boldsymbol{\mu}) + \lambda_{r} \mathrm{KL}(\mathbf{P}^{T}\mathbb{1}_{n}|\boldsymbol{\nu}).$$

$$P_{\lambda_{c},\lambda_{r}}^{*}$$

$$Lazy-\mathrm{EMD}_{\lambda_{c},\lambda_{r}} = \langle \mathbf{C}, \mathbf{P}_{\lambda_{c},\lambda_{r}}^{*} \rangle$$

Matching weight

$$p_i^* = \exp\left(-\frac{\underline{c_i}}{\lambda_c} - \frac{\lambda_r}{\lambda_c}A\right) \cdot w_i \quad \underline{c_i} \nearrow, p_i^* \searrow$$

Demo:

Compare intrinsic metrics!

Demonstration: Compare Intrinsic Metrics !

- Choose the encoder
- Explore the similarity matrix
- Get evaluation scores under different metrics
- Explore their matching weights

Thanks for your attention !

Resources: <u>https://github.com/Beastlyprime/lazy_emd</u>

TRY OUR DEMO!

