MOTIVATION

- Embedding-based evaluation measures have shown promising improvements
- Various intrinsic metrics are used in these measures
- The relations between these metrics are unclear, making it difficult to determine which measure to use in real applications.

INTRINSIC METRICS

Existing Intrinsic Metrics:

- Generalized precision, recall, F-score (In BERTScore (ICLR, 2019))
- Earth mover's distance (In WMD (ICML, 2014), MoverScore (EMNLP, 2019))

We prove that they correspond to optimal transport plan under different hard constraints

$\min_{\mathbf{P}\in\mathbb{R}^{n\times m}_+}$	$\langle {f C}, {f P} angle$	
s.t. $\mathbf{P}\mathbb{1}_m =$	$\boldsymbol{\mu}, \mathbf{P}^T \mathbb{1}_n = \boldsymbol{\nu}.$	$EMD = \langle C, P^* \rangle$
s.t. $\mathbf{P}\mathbb{1}_m =$	$\mu \longrightarrow$	$P = \langle S, P_p^* \rangle$
<i>s.t</i> .	$\mathbf{P}^T \mathbb{1}_n = \boldsymbol{\nu}. \longrightarrow$	$R = \langle S, P_r^* \rangle$

MATCHING PROBLEMS

Reference: The young man in a slicker.

- Candidate: The boy in a coat.
- paraphrase
- Incomplete matching: happens when paraphrases in two sentences are partly matched.
- Noisy matching: happens when words are matched to less related ones, instead of their semantic neighbors.

We prove that Generalized Precision, Recall and EMD have the above two problems.

Lazy Earth Mover's Distance is a Better Intrinsic Metric

HIGHLIGHTS

- Existing intrinsic metrics can be bridged by optimal transport problem. They correspond to optimal transport plan under different hard constraints on the marginal.
- Existing intrinsic metrics induce incomplete and noisy matching, due to the hard constraints.
- We propose Lazy Earth Mover's Distance, an intrinsic metric induced by optimal transport problem with soft bilateral constraints.
- Theoretically and experimentally, evaluation measure based on Lazy Earth Mover's Distance produces better evaluation results.

Existing intrinsic metrics

Lazy-EMD

- Lazy-EMD is induced from unbalanced optimal transport problem, which relaxes the hard marginal constraints.
- Lazy-EMD recovers EMD, Generalized P, R at the limits:
 EMD = Lazy-EMD = 0, 100 mm

$$P = 1 - \text{Lazy-EMD}_{\infty,0}, \quad R = 1 - \text{Lazy-EMD}_{0,\infty}$$

• Lazy matching alleviates the incomplete and noisy matching problems: (c: distance p: matching weight)

$$p_i^* = \exp\left(-\frac{c_i}{\lambda_c} - \frac{\lambda_r}{\lambda_c}A\right) \cdot w_i \quad c_i \nearrow, p_i^* \searrow$$

RESULTS

Experiments results on WMT19 translation benchmark.

- Evaluation quality is measured by segment level correlations with human judgements.
- Results show Lazy-EMD achieves the best on 12 of 15 language pairs

n	cs-en -/27k	de-en 85k/100k	fi-en 38k/32k	gu-en 31k/11k	kk-en 27k/18k	lt-en 22k/17k	ru-en 46k/24k	zh-en 31k/19k
SENTBLEU	-/.367	.056/.248	.233/.396	.188/.465	.377/.392	.262/.334	.125/.469	.323/.270
P_{BERT}	-/.444	.156/.314	.326/.498	.307/.519	.419/.493	.375/.422	.212/.540	.410/.306
R_{BERT}	-/.494	.160/.351	.346/.521	.295/.562	.416/ .541	.367/.449	.216/.577	.427/.352
F_{BERT}	-/.479	.166/.338	.344/.518	.313/.554	.434/.532	.375/.448	.223/.572	.430/.347
YiSi-1	-/.486	.165/.345	.346/.521	.317/.563	.433/.538	.373/.450	.225/.575	.433/.353
F_{α}	-/.495	.165/.351	.344/.522	.314/.563	.434/.541	.375/.449	.223/.578	.429/ .357
EMD	-/.479	.159/.338	.342/.523	.318/.561	.432/.539	.377/.455	.215/.566	.430/.343
Lazy-EMD	-/.498	.174/.356	.346/.526	.318/.569	.431/ .541	.377/.466	.215/ .582	.433 /.352

We use different penalty parameters λ_r , λ_c for 3 kinds of different target languages (English, Chinese and others). The following table shows the performances of Lazy-EMD under the three different parameters on WMT19, to further study the influence of different penalty parameters.

(λ_c,λ_r)	cs-en -/27k	de-en 85k/100k	fi-en 38k/32k	gu-en 31k/11k	kk-en 27k/18k	lt-en 22k/17k	ru-en 46k/24k	zh-en 31k/19k
(0.23, 0.31)	-/.487	.174/.351	.346/.523	.318/.562	.431/.531	.377/.471	.215 /.579	.433/.337
(0.009, 0.95)	-/.498	.172/.356	.343/.526	.292/.570	.413/.541	.369/.466	.213/.582	.427/.351
(0.018, 0.97)	-/.497	.174/.355	.343/ .526	.293/.569	.415/ .541	.368/.467	.214/.581	.426/ .352

It shows:

- The performance of Lazy-EMD is insensitive to slight variation on the parameters.
- Optimal parameter choices differ between languages.

TRY IT! ->