From Generative Model to ...

Yimeng Chen

University of Chinese Academy of Science

November 15th, 2017

Main idea

- Introducing the theory framework of GAN
- Introducing the Wasserstein GAN
- Talk about some new work on this topic
- Raise some questions

Generative Model Generative Adversarial Networks GAN with ...

Outline

Generative Model

- 2 Generative Adversarial Networks
- 3 Wasserstein GAN

Wasserstein GAN GAN with

Section 1

Generative Model

- Generative Model vs Discriminative Model
- Objective of Classical Generative Model
- KL divergence

Generative Model vs Discriminative Model Objective of Classical Generative Model KL divergence

Generative Model vs Discriminative Model

In order to determine the label y of x:

- Discriminative model learns p(y|x) directly.
- Generative model

Learns p(x|y) (and p(y)), then use Bayes rule

$$arg \max_{y} p(y|x) = arg \max_{y} p(x|y)p(y).$$

Generative Adversarial Networks Wasserstein GAN GAN with ... Generative Model vs Discriminative Model Objective of Classical Generative Model KL divergence

Generative Model vs Discriminative Model

Figure 1: Two Gaussian distribution.

CS 229 lecture notes, Andrew Ng.

Generative Model vs Discriminative Model Objective of Classical Generative Model KL divergence

Classical Generative Model

Classical way to learn a probability density:

Generative Model vs Discriminative Model Objective of Classical Generative Model KL divergence

Classical Generative Model

Classical way to learn a probability density:

• Defining a parametric family of densities $(p_{ heta})_{ heta \in \mathbb{R}_d}$

Generative Model vs Discriminative Model Objective of Classical Generative Model KL divergence

Classical Generative Model

Classical way to learn a probability density:

- Defining a parametric family of densities $(p_{ heta})_{ heta \in \mathbb{R}_d}$
- Do maximal likelihood estimation on real data samples $\{x^{(i)}\}_{i=1}^{m}$:

$$\max_{\theta \in \mathbb{R}_d} \frac{1}{m} \sum_{i=1}^m \log p_{\theta}(x^{(i)})$$

Generative Model vs Discriminative Model Objective of Classical Generative Model KL divergence

Classical Generative Model

Classical way to learn a probability density:

- Defining a parametric family of densities $(p_{ heta})_{ heta \in \mathbb{R}_d}$
- Do maximal likelihood estimation on real data samples $\{x^{(i)}\}_{i=1}^{m}$:

$$\max_{\theta \in \mathbb{R}_d} \frac{1}{m} \sum_{i=1}^m \log p_{\theta}(x^{(i)})$$

 That's equivalent to minimize the KL divergence KL(P_{r-emp}||P_θ)

Generative Adversarial Networks Wasserstein GAN GAN with ... Generative Model vs Discriminative Model Objective of Classical Generative Model KL divergence

KL divergence

Definition 1.1 (KL divergence)

$$\mathit{KL}(\mathbb{P}_r \| \mathbb{P}_{ heta}) = \int \log(rac{p_r(x)}{p_{ heta}(x)}) p_r(x) d\mu(x)$$

Generative Adversarial Networks Wasserstein GAN GAN with ... Generative Model vs Discriminative Model Objective of Classical Generative Model KL divergence

KL divergence

Definition 1.1 (KL divergence)

$$\mathit{KL}(\mathbb{P}_r \| \mathbb{P}_{ heta}) = \int \log(rac{p_r(x)}{p_{ heta}(x)}) p_r(x) d\mu(x)$$

• Asymmetric

Generative Adversarial Networks Wasserstein GAN GAN with ... Generative Model vs Discriminative Model Objective of Classical Generative Model KL divergence

KL divergence

Definition 1.1 (KL divergence)

$$\mathcal{KL}(\mathbb{P}_r \| \mathbb{P}_{ heta}) = \int \log(rac{p_r(x)}{p_{ heta}(x)}) p_r(x) d\mu(x)$$

- Asymmetric
- When $P_{\theta}(x) = 0$ and $P_r(x) > 0$, it is infinite.

Generative Adversarial Networks Wasserstein GAN GAN with ... Generative Model vs Discriminative Model Objective of Classical Generative Model KL divergence

KL divergence

Definition 1.1 (KL divergence)

$$\mathcal{KL}(\mathbb{P}_r \| \mathbb{P}_{ heta}) = \int \log(rac{p_r(x)}{p_{ heta}(x)}) p_r(x) d\mu(x)$$

- Asymmetric
- When $P_{\theta}(x) = 0$ and $P_r(x) > 0$, it is infinite.
- Typical remedy is to add a noise component, but it will degrade the quality of the samples.

Generative Adversarial Networks Objective of GAN JS divergence Unstability

Section 2

Generative Model

2 Generative Adversarial Networks

- Generative Adversarial Networks
- Objective of GAN
- JS divergence
- Unstability

3 Wasserstein GAN

GAN with ...

Generative Adversarial Networks Objective of GAN JS divergence Unstability

Generative Adversarial Networks

Generator

Noise variable $\mathbf{z} \sim p_z(\mathbf{z})$

Generative Adversarial Networks Objective of GAN JS divergence Unstability

Generative Adversarial Networks

Generator

Noise variable $\mathbf{z} \sim p_z(\mathbf{z})$ Parametric function(NN) $G(\mathbf{z}; \theta_g) : \mathcal{Z} \rightarrow \mathcal{X}$

Generative Adversarial Networks Objective of GAN JS divergence Unstability

Generative Adversarial Networks

Generator

Noise variable $\mathbf{z} \sim p_z(\mathbf{z})$ Parametric function(NN) $G(\mathbf{z}; \theta_g) : \mathcal{Z} \rightarrow \mathcal{X}$

Discriminator

Parametric function(NN) $D(\mathbf{x}; \theta_d) : \mathcal{X} \rightarrow [0, 1]$

Generative Adversarial Networks Objective of GAN JS divergence Unstability

Generative Adversarial Networks

Generator

Noise variable $\mathbf{z} \sim p_z(\mathbf{z})$ Parametric function(NN) $G(\mathbf{z}; \theta_g) : \mathcal{Z} \rightarrow \mathcal{X}$

Discriminator

Parametric function(NN) $D(\mathbf{x}; \theta_d) : \mathcal{X} \to [0, 1]$

Analogy

Currency Counterfeiters and the Police **Key idea:** *Policy update*

Generative Adversarial Networks Objective of GAN JS divergence Unstability

Objective of GAN

GAN Objective

$$\min_{G} \max_{D} V(D,G) = \mathbb{E}_{\mathbf{x} \sim p_{data}(\mathbf{x})}[\log D(\mathbf{x})] + \mathbb{E}_{\mathbf{z} \sim p_{z}(\mathbf{z})}[\log(1 - D(G(\mathbf{z})))]$$

Generative Adversarial Networks Objective of GAN JS divergence Unstability

Objective of GAN

GAN Objective

$$\min_{G} \max_{D} V(D,G) = \mathbb{E}_{\mathbf{x} \sim p_{data}(\mathbf{x})}[\log D(\mathbf{x})] + \mathbb{E}_{\mathbf{z} \sim p_{z}(\mathbf{z})}[\log(1 - D(G(\mathbf{z})))]$$

• Also a Maximum Likelihood Estimation.

Generative Adversarial Networks Objective of GAN JS divergence Unstability

Objective of GAN

GAN Objective

$$\min_{G} \max_{D} V(D,G) = \mathbb{E}_{\mathbf{x} \sim p_{data}(\mathbf{x})}[\log D(\mathbf{x})] + \mathbb{E}_{\mathbf{z} \sim p_{z}(\mathbf{z})}[\log(1 - D(G(\mathbf{z})))]$$

- Also a Maximum Likelihood Estimation.
- There exists an unique optimal D^* , $D^*_G(\mathbf{x}) = \frac{p_{data}(\mathbf{x})}{p_{data}(\mathbf{x}) + p_g(\mathbf{x})}$.

Generative Adversarial Networks Objective of GAN JS divergence Unstability

Optimal D

Under optimal D, the objective function

$$V(D^*, G) = \mathbb{E}_{\mathbf{x} \sim \rho_{data}(\mathbf{x})}[\log \frac{p_{data}(\mathbf{x})}{p_{data}(\mathbf{x}) + p_g(\mathbf{x})}] + \mathbb{E}_{\mathbf{x} \sim p_g}[\log \frac{p_g(\mathbf{x})}{p_{data}(\mathbf{x}) + p_g(\mathbf{x})}]$$

Generative Adversarial Networks Objective of GAN JS divergence Unstability

Optimal D

Under optimal D, the objective function

$$V(D^*, G) = \mathbb{E}_{\mathbf{x} \sim p_{data}(\mathbf{x})}[\log \frac{p_{data}(\mathbf{x})}{p_{data}(\mathbf{x}) + p_g(\mathbf{x})}] + \mathbb{E}_{\mathbf{x} \sim p_g}[\log \frac{p_g(\mathbf{x})}{p_{data}(\mathbf{x}) + p_g(\mathbf{x})}]$$

In view of JS divergence, we have

$$V(D^*, G) = -\log 4 + 2 \cdot JSD(p_{data} \| p_g)$$

Generative Adversarial Networks Objective of GAN JS divergence Unstability

JS divergence

Definition 2.1 (JS divergence)

$$JS(\mathbb{P}_r || \mathbb{P}_g) = KL(\mathbb{P}_r || \mathbb{P}_m) + KL(\mathbb{P}_m || \mathbb{P}_g),$$
$$\mathbb{P}_m = (\mathbb{P}_r + \mathbb{P}_g)/2$$

- Symmetric
- $0 \leq JSD(P \| Q) \leq \log 2$

Generative Adversarial Networks Objective of GAN JS divergence Unstability

Training of GAN

• $D(\mathbf{x}; \theta_d)$

In every step, use a mini-batch of samples of $p_{data}(\mathbf{x})$ and $p_g(\mathbf{z})$.

$$\nabla_{\theta_d} \frac{1}{m} \sum_{i=1}^m \left[\log D(\mathbf{x}^{(i)}) + \log(1 - D(G(\mathbf{z}^{(i)}))) \right]$$

Generative Adversarial Networks Objective of GAN JS divergence Unstability

Training of GAN

• $D(\mathbf{x}; \theta_d)$

In every step, use a mini-batch of samples of $p_{data}(\mathbf{x})$ and $p_g(\mathbf{z})$.

$$\nabla_{\theta_d} \frac{1}{m} \sum_{i=1}^m \left[\log D(\mathbf{x}^{(i)}) + \log(1 - D(G(\mathbf{z}^{(i)}))) \right]$$

G(z; θ_g)
 In every step, use a mini-batch of samples of p_g(z).

$$\nabla_{\theta_g} \frac{1}{m} \sum_{i=1}^m \log(1 - D(G(\mathbf{z}^{(i)})))$$

Generative Adversarial Networks Objective of GAN JS divergence Unstability

Questions

Generative Adversarial Networks Objective of GAN JS divergence Unstability

Questions

Question 1

What's the difference between the empirical distribution

$$\frac{1}{m}\sum_{i}^{m}\delta_{x}$$

and the distribution we compute in the training of GAN? How about the real distribution?

Generative Adversarial Networks Objective of GAN JS divergence Unstability

Questions

Question 1

What's the difference between the empirical distribution

and the distribution we compute in the training of GAN? How about the real distribution?

Question 2

What's the relationship between G and D?

Generative Adversarial Networks Objective of GAN JS divergence Unstability

Unstability

Generative Adversarial Networks Objective of GAN JS divergence Unstability

Unstability

Lemma 1 (low dimensionality)

Let $g : \mathbb{Z} \to \mathcal{X}$ be a function composed by affine transformations and pointwise nonlinearities, then $g(\mathbb{Z})$ is contained in a countable union of manifolds of dimension at most dim \mathbb{Z} .

Lemma 2 (perfectly align)

Let \mathcal{M} and \mathcal{P} be two regular submanifolds of \mathbb{R}^d that don't have full dimension. Let η , η' be arbitrary independent continuous random variables. We therefore define the perturbed manifolds as $\widetilde{\mathcal{M}} = \mathcal{M} + \eta$ and $\widetilde{\mathcal{P}} = \mathcal{P} + \eta'$. Then

 $\mathbb{P}_{\eta,\eta'}(\widetilde{\mathcal{M}} ext{ does not perfectly align with } \widetilde{\mathcal{P}}) = 1$

Generative Adversarial Networks Objective of GAN JS divergence Unstability

Unstability

Theorem 3

Let \mathbb{P}_r and \mathbb{P}_g be two distributions whose support lies in two manifolds \mathcal{M} and \mathcal{P} that don't have full dimension and don't perfectly align. We further assume that \mathbb{P}_r and \mathbb{P}_g are continuous in their respective manifolds. Then

$$JSD(\mathbb{P}_r || \mathbb{P}_g) = \log 2,$$

$$KL(\mathbb{P}_r || \mathbb{P}_g) = +\infty,$$

$$KL(\mathbb{P}_g || \mathbb{P}_r) = +\infty.$$

Generative Adversarial Networks Objective of GAN JS divergence Unstability

Unstability

Theorem 4 (Vanishing gradients on the generator)

Let G induces \mathbb{P}_{g} . \mathbb{P}_{r} is the real data distribution. Under the same condition in theorem 3, and when $||D - D^{*}|| < \epsilon$, $\mathbb{E}_{z \sim p(z)}[||\nabla_{\theta}g_{\theta}(z)||_{2}^{2}] \leq M^{2}$, we have

$$\|
abla_{ heta}\mathbb{E}_{\mathsf{z}\sim
ho(\mathsf{z})}[\log(1-D(g_{ heta}(z)))]\|_2 < Mrac{\epsilon}{1-\epsilon}$$

Wasserstein distances Continuity Objective of WGAN

Section 3

2 Generative Adversarial Networks

3 Wasserstein GAN

- Wasserstein distances
- Continuity
- Objective of WGAN

GAN with ...

Wasserstein distances Continuity Objective of WGAN

Optimal transport distance

Definition 3.0 (Kantorovich problem)

Given $\mu \in \mathscr{P}(X)$, $\nu \in \mathscr{P}(Y)$, and $c : X \times Y \to [0, +\infty]$, we consider the problem

$$\min\{\int_{X\times Y} c(x,y)d\gamma : \gamma \in \Pi(\mu,\nu)\}$$

Here $\Pi(\mu, \nu)$ is the set of transport plans

$$\Pi(\mu,\nu) = \{\gamma \in \mathscr{P}(X \times Y) : (\pi_x)_{\sharp}\gamma = \mu, (\pi_y)_{\sharp}\gamma = \nu\}$$
Wasserstein distances Continuity Objective of WGAN

Wasserstein distances

Definition 3.1 (Wasserstein Distances on Ω)

For $\Omega \in \mathbb{R}^d$, $\mathscr{P}_p(\Omega) := \{ \mu \in \mathscr{P}(\Omega) : \int |x|^p d\mu < +\infty \}$ For $\forall \mu, \nu \in \mathscr{P}_p(\Omega)$,

$$W_p(\mu, \nu) := \min\{\int_{\Omega \times \Omega} |x - y|^p d\gamma : \gamma \in \Pi(\mu, \nu)\}^{\frac{1}{p}}$$

Wasserstein distances Continuity Objective of WGAN

Wasserstein distances

Definition 3.1 (Wasserstein Distances on Ω)

For $\Omega \in \mathbb{R}^d$, $\mathscr{P}_p(\Omega) := \{ \mu \in \mathscr{P}(\Omega) : \int |x|^p d\mu < +\infty \}$ For $\forall \mu, \nu \in \mathscr{P}_p(\Omega)$,

$$W_p(\mu, \nu) := \min\{\int_{\Omega imes \Omega} |x - y|^p d\gamma : \gamma \in \Pi(\mu, \nu)\}^{\frac{1}{p}}$$

• Equivalence between the convergence for $W_p(p < \infty)$ and for W_1 : $W_1(\mu, \nu) \le W_p(\mu, \nu) \le CW_1(\mu, \nu)^{\frac{1}{p}}$

Wasserstein distances Continuity Objective of WGAN

Wasserstein distances

Definition 3.1 (Wasserstein Distances on Ω)

For $\Omega \in \mathbb{R}^d$, $\mathscr{P}_p(\Omega) := \{ \mu \in \mathscr{P}(\Omega) : \int |x|^p d\mu < +\infty \}$ For $\forall \mu, \nu \in \mathscr{P}_p(\Omega)$,

$$W_p(\mu, \nu) := \min\{\int_{\Omega imes \Omega} |x - y|^p d\gamma : \gamma \in \Pi(\mu, \nu)\}^{\frac{1}{p}}$$

• Equivalence between the convergence for $W_p(p < \infty)$ and for W_1 :

$$W_1(\mu, \nu) \leq W_p(\mu, \nu) \leq CW_1(\mu, \nu)^{\frac{1}{p}}$$

• When p < q, $\mathscr{P}_p(\Omega) \subset \mathscr{P}_q(\Omega)$

Wasserstein distances Continuity Objective of WGAN

Weak convergence

Definition 3.2 (Total variation)

Denote $\mathcal{P}(X)$ the space of all the probability measures on X.

- Total variation norm: For $\forall \mu \in \mathcal{P}(X)$, $\|\mu\|_{TV} = \sup_{A \subseteq \mathcal{X}} |\mu(A)|$, A is any Borel set in \mathcal{X} .
- Total variation distance: For $\forall \mu, \nu \in \mathcal{P}(X)$, $\delta(\mu, \nu) = \|\mu - \nu\|_{TV}$

Wasserstein distances Continuity Objective of WGAN

Weak convergence

Definition 3.2 (Total variation)

Denote $\mathcal{P}(X)$ the space of all the probability measures on X.

- Total variation norm: For $\forall \mu \in \mathcal{P}(X)$, $\|\mu\|_{TV} = \sup_{A \subseteq \mathcal{X}} |\mu(A)|$, A is any Borel set in \mathcal{X} .
- Total variation distance: For $\forall \mu, \nu \in \mathcal{P}(X)$, $\delta(\mu, \nu) = \|\mu - \nu\|_{TV}$

Definition 3.3 (The weak-* convergence of probability measures)

For compact spaces X, $\mathcal{M}(X)$ is isomorphic to the dual space of C(X). The convergence of $\mathcal{M}(X)$ in duality with C(X) is weak-* convergence.

Wasserstein distances Continuity Objective of WGAN

Relationship

By Pinsker's inequality [2],

$$\delta(P,Q) \leq rac{1}{2}\sqrt{D_{\mathcal{KL}}(P,Q)}$$

Wasserstein distances Continuity Objective of WGAN

Relationship

By Pinsker's inequality [2],

$$\delta(P,Q) \leq \frac{1}{2}\sqrt{D_{\mathcal{KL}}(P,Q)}$$

On compact subset of $\mathbb{R}^d[1]$,

$$\mathbb{P}_n \xrightarrow{TV} \mathbb{P} \Leftrightarrow \mathbb{P}_n \xrightarrow{JSD} \mathbb{P},$$
$$\mathbb{P}_n \xrightarrow{*} \mathbb{P} \Leftrightarrow \mathbb{P}_n \xrightarrow{W_p} \mathbb{P}$$

Wasserstein distances Continuity Objective of WGAN

Relationship

By Pinsker's inequality [2],

$$\delta(P,Q) \leq \frac{1}{2}\sqrt{D_{\mathcal{KL}}(P,Q)}$$

On compact subset of $\mathbb{R}^d[1]$,

$$\mathbb{P}_n \xrightarrow{TV} \mathbb{P} \Leftrightarrow \mathbb{P}_n \xrightarrow{JSD} \mathbb{P},$$
$$\mathbb{P}_n \xrightarrow{*} \mathbb{P} \Leftrightarrow \mathbb{P}_n \xrightarrow{W_p} \mathbb{P}$$

On separable spaces [3],

$$\mathbb{P}_n \stackrel{*}{\rightharpoonup} \mathbb{P} \Leftrightarrow \mathbb{P}_n \stackrel{D}{\longrightarrow} \mathbb{P}$$

Wasserstein distances Continuity Objective of WGAN

Relationship

On compact subset Ω of \mathbb{R}^d ,

$$\mathbb{P}_n \xrightarrow{D_{\mathcal{K}L}} \mathbb{P} \Rightarrow \mathbb{P}_n \xrightarrow{JSD} \mathbb{P} \Leftrightarrow \mathbb{P}_n \xrightarrow{TV} \mathbb{P} \Rightarrow \mathbb{P}_n \xrightarrow{*} \mathbb{P} \Leftrightarrow \mathbb{P}_n \xrightarrow{W_p} \mathbb{P}$$

Wasserstein distances Continuity Objective of WGAN

Continuity

Figure 2: vertical vs horizontal

Wasserstein distances Continuity Objective of WGAN

Continuity

Theorem 5

Let \mathbb{P}_r be a fixed distribution over \mathcal{X} . Let Z be a random variable (e.g Gaussian) over another space \mathcal{Z} . Let $g : \mathcal{Z} \times \mathbb{R}^d \to \mathcal{X}$ be a function, that will be denoted $g_{\theta}(z)$ with z the first coordinate and θ the second. Let P_{θ} denote the distribution of $g_{\theta}(Z)$. Then, 1. If g is continuous in θ , so is $W(\mathbb{P}_r, \mathbb{P}_{\theta})$. 2. If g is locally Lipschitz and satisfies regularity assumption 1, then $W(\mathbb{P}_r, \mathbb{P}_{\theta})$ is continuous everywhere, and differentiable almost everywhere.

3. Statements 1-2 are false for the Jensen-Shannon divergence $JS(\mathbb{P}_r, \mathbb{P}_{\theta})$ and all the KLs.

Wasserstein distances Continuity Objective of WGAN

Continuity

Difinition 3.4 (Lipschitz continuity)

Given two metric spaces (X, d_X) and (Y, d_Y) , a function $f: X \to Y$ is called K-Lipschitz continuous if there exists a real constant $K \ge 0$ such that, for all x_1 and x_2 in X,

 $d_Y(f(x_1), f(x_2)) \leq K d_X(x_1, x_2).$

Wasserstein distances Continuity Objective of WGAN

Continuity

Difinition 3.4 (Lipschitz continuity)

Given two metric spaces (X, d_X) and (Y, d_Y) , a function $f: X \to Y$ is called K-Lipschitz continuous if there exists a real constant $K \ge 0$ such that, for all x_1 and x_2 in X,

$$d_Y(f(x_1), f(x_2)) \leq K d_X(x_1, x_2).$$

Definition 3.5 (locally Lipschitz)

A function is called locally Lipschitz continuous if for every x in X there exists a neighborhood U of x such that f restricted to U is Lipschitz continuous.

If X is a locally compact metric space, then f is **locally Lipschitz** if and only if it is Lipschitz continuous on every compact subset of X.

Wasserstein distances Continuity Objective of WGAN

Continuity

Lemma 6 (Regularity assumption 1)

Let $g : \mathcal{Z} \times \mathbb{R}^d \to \mathcal{X}$ be locally Lipschitz between finite dimensional vector spaces, i.e. for a given pair (θ, z) there is a constant $L(\theta, z)$ and an neighborhood U s.t. $\forall (\theta', z') \in U$ we have

$$\|g_{ heta}(z) - g_{ heta'}(z')\| \leq L(heta,z)(\| heta- heta\|+\|z-z'\|)$$

We say that g satisfies assumption 1 for a certain probability distribution p over Z if $\mathbb{E}_{z \sim p(z)}[L(\theta, z)] < +\infty$

Wasserstein distances Continuity Objective of WGAN

Continuity

Theorem 7 (Continuity of NNs)

Let g_{θ} be any feed-forward neural network(a function composed by affine transformations and pointwise nonlinearities which are smooth Lipschitz functions) parameterized by θ , and p(z) a prior over z such that $\mathbb{E}_{z \sim p(z)}[||z||] < \infty$ (e.g. Gaussian, uniform, etc.). Then assumption 1 is satisfied and therefore $W(\mathbb{P}_r, \mathbb{P}_{\theta})$ is continuous everywhere and differentiable almost everywhere.

Wasserstein distances Continuity Objective of WGAN

Duality form of W_1

$$W_1(\mu,
u) = max\{\int_\Omega arphi d\mu - \int_\Omega arphi d
u : arphi \in Lip_1(\Omega)\}$$

Wasserstein distances Continuity Objective of WGAN

Duality form of W_1

$$W_1(\mu,
u) = max\{\int_\Omega arphi d\mu - \int_\Omega arphi d
u : arphi \in Lip_1(\Omega)\}$$

• We can let our Discriminator act the role of φ .

Wasserstein distances Continuity Objective of WGAN

Duality form of W_1

$$W_1(\mu,
u) = max\{\int_\Omega arphi d\mu - \int_\Omega arphi d
u : arphi \in Lip_1(\Omega)\}$$

- \bullet We can let our Discriminator act the role of $\varphi.$
- By the dual form of W_1 ,

$$W_1(\mathbb{P}_r, \mathbb{P}_\theta) = \sup_{\|D\|_L \le 1} \mathbb{E}_{\mathbf{x} \sim p_r(\mathbf{x})}[D(x)] - \mathbb{E}_{\mathbf{x} \sim p_\theta(\mathbf{x})}[D(x)]$$

Wasserstein distances Continuity Objective of WGAN

Objective of WGAN

Definition 3.7 (Objective of WGAN)

$$\min_{G} \max_{\omega \in \mathcal{W}} \mathbb{E}_{\mathbf{x} \sim p_r(\mathbf{x})}[D_{\omega}(\mathbf{x})] - \mathbb{E}_{\tilde{\mathbf{x}} \sim p_g(\tilde{\mathbf{x}})}[D_{\omega}(\tilde{\mathbf{x}})]],$$

Here \mathcal{W} is bounded to a fixed box like $[-0.01, 0.01]^{l}$. In this way we restrict D in a compact subset of \mathbb{R}^{d} , to make it Lipschitz.

Wasserstein distances Continuity Objective of WGAN

Improved Objective of WGAN

$$\min_{D} \max_{G} \mathbb{E}_{\tilde{\mathbf{x}} \sim p_{g}(\tilde{\mathbf{x}})}[D(\tilde{\mathbf{x}})] - \mathbb{E}_{\mathbf{x} \sim p_{r}(\mathbf{x})}[D(\mathbf{x})] + \lambda \mathbb{E}_{\hat{\mathbf{x}} \sim p_{g}(\hat{\mathbf{x}})}[(\|\nabla_{\hat{\mathbf{x}}} D(\hat{\mathbf{x}})\|_{2} - 1)^{2}]$$

- A differentiable function is 1-Lipschitz if and only if it has gradients with norm at most 1 everywhere.
- The last item is the gradient penalty.

Wasserstein distances Continuity Objective of WGAN

Questions

Question 3

What is the difference between the Discriminator family and all the Lipschitz-1 functions? Can the Discriminator represent the optimal function?

The wind? ⁼ distance and MIX+

Section 4

2 Generative Adversarial Networks

3 Wasserstein GAN

- The wind?
- F distance and MIX+

The wind? F distance and MIX+

GAN with the wind?

Theorem 8 (Stricly convex costs)

Given μ and ν probability measures on a compact domain $\Omega \in \mathbb{R}^d$, there exists an optimal transport plan γ for the cost c(x, y) = h(x - y) with h strictly convex. It is unique and of the form $(id, T)_{\#}\mu$, provided μ is absolutely continuous and $\delta\Omega$ is negligible. Moreover, there exists a Kantorovich potential φ , and T and the potentials φ are linked by

$$T(x) = x - \nabla(h)^{-1}(\nabla(\varphi(x)))$$

The wind? F distance and MIX+

GAN with the wind?

Theorem 8 (Stricly convex costs)

Given μ and ν probability measures on a compact domain $\Omega \in \mathbb{R}^d$, there exists an optimal transport plan γ for the cost c(x, y) = h(x - y) with h strictly convex. It is unique and of the form $(id, T)_{\#}\mu$, provided μ is absolutely continuous and $\delta\Omega$ is negligible. Moreover, there exists a Kantorovich potential φ , and T and the potentials φ are linked by

$$T(x) = x - \nabla(h)^{-1}(\nabla(\varphi(x)))$$

All the costs of the form c(x, y) = |x - y|^p with p > 1 can be dealt with via Theorem 5.

The wind? F distance and MIX+

GAN with the wind?

• W_2 : Good Geometrical Significance By theorem 8, when $c(x, y) = \frac{1}{2}|x - y|^2$

$$T(x) = x - \nabla \varphi(x) = \nabla (\frac{x^2}{2} - \varphi(x)) = \nabla u(x).$$

u(x) is called Brenier's potential. φ is called Kantorovich's potential.

The wind? F distance and MIX+

GAN with the wind?

• W_2 : Good Geometrical Significance By theorem 8, when $c(x, y) = \frac{1}{2}|x - y|^2$

$$T(x) = x - \nabla \varphi(x) = \nabla (\frac{x^2}{2} - \varphi(x)) = \nabla u(x).$$

u(x) is called Brenier's potential. φ is called Kantorovich's potential.

• Compute via convex geometry method or numerical method

The wind? F distance and MIX+

Geometric generative model

Figure 3: Geometric generative model.

The wind? F distance and MIX+

Wind?

Question 1*

An empirical distribution...

Is that what we want?

The wind? F distance and MIX+

Wind?

Question 1^*

An empirical distribution...

Is that what we want?

Question 2

What's the relationship between G and D?

The wind? F distance and MIX+

WGAN is fake

The Answer for the Question 3

The function family in the objective of WGAN is not the same as the family of Lipschitz-1 function.

The objective of WGAN is not the Wasserstein distance.

The wind? F distance and MIX+

WGAN is fake

The Answer for the Question 3

The function family in the objective of WGAN is not the same as the family of Lipschitz-1 function.

The objective of WGAN is not the Wasserstein distance.

A part of answer for the Question 1

Definition of "Generalization of GAN".

The wind? F distance and MIX+

WGAN is fake

The Answer for the Question 3

The function family in the objective of WGAN is not the same as the family of Lipschitz-1 function.

The objective of WGAN is not the Wasserstein distance.

A part of answer for the Question 1

Definition of "Generalization of GAN".

A kind of answer for the Question 2

Game theory and the equilibrium between G and D

The wind? F distance and MIX+

F distance

Definition 4.1 (F distance)

Let \mathcal{F} be a class of functions from \mathbb{R}^d to [0,1] and φ be a concave measuring function. Then the \mathcal{F} -divergence with respect to ϕ between two distribution μ and ν supported on \mathbb{R}^d is defined as

$$d_{\mathcal{F},\phi}(\mu,\nu) = \sup_{D\in\mathcal{F}} |\mathbb{E}_{x\sim\mu}[\phi(D(x))] + \mathbb{E}_{x\sim\nu}[\phi(1-D(x))]| - 2\phi(1/2)$$

The wind? F distance and MIX+

F distance

Definition 4.1 (F distance)

Let \mathcal{F} be a class of functions from \mathbb{R}^d to [0,1] and φ be a concave measuring function. Then the \mathcal{F} -divergence with respect to ϕ between two distribution μ and ν supported on \mathbb{R}^d is defined as

 $d_{\mathcal{F},\phi}(\mu,\nu) = \sup_{D\in\mathcal{F}} |\mathbb{E}_{x\sim\mu}[\phi(D(x))] + \mathbb{E}_{x\sim\nu}[\phi(1-D(x))]| - 2\phi(1/2)$

 When φ(t) = t, *F*-distance is a pseudo-metric(Integral Probability Metric, IPM)

The wind? F distance and MIX+

F distance

Definition 4.1 (F distance)

Let \mathcal{F} be a class of functions from \mathbb{R}^d to [0,1] and φ be a concave measuring function. Then the \mathcal{F} -divergence with respect to ϕ between two distribution μ and ν supported on \mathbb{R}^d is defined as

$$d_{\mathcal{F},\phi}(\mu,\nu) = \sup_{D\in\mathcal{F}} |\mathbb{E}_{x\sim\mu}[\phi(D(x))] + \mathbb{E}_{x\sim\nu}[\phi(1-D(x))]| - 2\phi(1/2)$$

- When φ(t) = t, *F*-distance is a pseudo-metric(Integral Probability Metric, IPM)
- When $\phi(t) = \log(t)$ and $\mathcal{F} = \{ \text{all functions from } \mathbb{R}^d \text{ to } [0,1] \}$, then $d_{\mathcal{F},\phi} = JSD$.

The wind? F distance and MIX+

F distance

Definition 4.1 (F distance)

Let \mathcal{F} be a class of functions from \mathbb{R}^d to [0,1] and φ be a concave measuring function. Then the \mathcal{F} -divergence with respect to ϕ between two distribution μ and ν supported on \mathbb{R}^d is defined as

$$d_{\mathcal{F},\phi}(\mu,\nu) = \sup_{D\in\mathcal{F}} |\mathbb{E}_{x\sim\mu}[\phi(D(x))] + \mathbb{E}_{x\sim\nu}[\phi(1-D(x))]| - 2\phi(1/2)$$

- When φ(t) = t, *F*-distance is a pseudo-metric(Integral Probability Metric, IPM)
- When $\phi(t) = \log(t)$ and $\mathcal{F} = \{ \text{all functions from } \mathbb{R}^d \text{ to } [0,1] \}$, then $d_{\mathcal{F},\phi} = JSD$.
- When $\phi(t) = t$ and $F = \{ all 1 \text{-Lipschitz functions from } \mathbb{R}^d \text{ to } [0,1] \}$, then $d_{\mathcal{F},\phi} = W_1$.
The wind? F distance and MIX+

Neural net distance

Suppose \mathcal{F} is the set of neural networks, and $\phi(t) = t$, then the objective function used empirically in Arjovsky et al. [2017] is equivalent to

$$\min_{G} d_{\mathcal{F}}(\hat{P}_{real}, \hat{P}_{G})$$

The wind? F distance and MIX+

Neural net distance

Suppose \mathcal{F} is the set of neural networks, and $\phi(t) = t$, then the objective function used empirically in Arjovsky et al. [2017] is equivalent to

$$\min_{G} d_{\mathcal{F}}(\hat{P}_{real}, \hat{P}_{G})$$

Definition 4.2 (NN distance)

When \mathcal{F} is a neural net, we refer $d_{\mathcal{F},\phi}$ as the **neural net distance**.

The wind? F distance and MIX+

Generalization of GAN

Definition 4.3 (Generalization)

We say a divergence or distance $d(\cdot, \cdot)$ between distribution generalizes with *m* training examples and error ϵ if for the learned distribution \mathbb{P}_{G} , the following holds with high probability

$$d(P_{\textit{real}}, P_G) - d(\hat{P}_{\textit{real}}, \hat{P}_G) \leq \epsilon$$

The wind? F distance and MIX+

Generalization of GAN

Definition 4.3 (Generalization)

We say a divergence or distance $d(\cdot, \cdot)$ between distribution generalizes with *m* training examples and error ϵ if for the learned distribution \mathbb{P}_{G} , the following holds with high probability

$$d(P_{real}, P_G) - d(\hat{P}_{real}, \hat{P}_G) \le \epsilon$$

• JS divergence and Wasserstein distance don't generalize.

The wind? F distance and MIX+

Generalization of GAN

Definition 4.3 (Generalization)

We say a divergence or distance $d(\cdot, \cdot)$ between distribution generalizes with *m* training examples and error ϵ if for the learned distribution \mathbb{P}_{G} , the following holds with high probability

$$d(P_{\textit{real}}, P_G) - d(\hat{P}_{\textit{real}}, \hat{P}_G) \leq \epsilon$$

- JS divergence and Wasserstein distance don't generalize.
- Neural Net distance generalizes.

The wind? F distance and MIX+

Lack of diversity

The neural net distance $d_{NN}(\mu, \nu)$ can be small even if μ, ν are not very close.

The wind? F distance and MIX+

Lack of diversity

The neural net distance $d_{NN}(\mu, \nu)$ can be small even if μ, ν are not very close.

Theorem 9 (Low-capacity discriminators cannot detect lack of diversity)

Let $\hat{\mu}$ be the empirical version of distribution μ with m samples. There is a some constant c such that when $m \leq c$, we have that with high probability

 $d_{\mathcal{F},\phi}(\mu,\hat{\mu}) \leq \epsilon.$

The wind? F distance and MIX+

Game theory and equilibrium

For a class of generators $\{G_u, u \in \mathcal{U}\}\$ and a class of discriminators $\{D_v, v \in \mathcal{V}\}\$, we can define the payoff F(u, v) of the game between generator and discriminator

$$F(u,v) = \mathbb{E}_{x \sim P_{real}}[\phi(D_v(x))] + \mathbb{E}_{x \sim P_{G_u}}[\phi(1 - D_v(x)))].$$

The wind? F distance and MIX+

Game theory and equilibrium

For a class of generators $\{G_u, u \in \mathcal{U}\}\$ and a class of discriminators $\{D_v, v \in \mathcal{V}\}\$, we can define the payoff F(u, v) of the game between generator and discriminator

$$F(u,v) = \mathbb{E}_{x \sim P_{real}}[\phi(D_v(x))] + \mathbb{E}_{x \sim P_{G_u}}[\phi(1 - D_v(x)))].$$

A mixed strategy for the generator is just a distribution S_u supported on U, and one for discriminator is a distribution S_v supported on V.

The wind? F distance and MIX+

Game theory and equilibrium

For a class of generators $\{G_u, u \in \mathcal{U}\}\)$ and a class of discriminators $\{D_v, v \in \mathcal{V}\}\)$, we can define the payoff F(u, v) of the game between generator and discriminator

$$F(u,v) = \mathbb{E}_{x \sim P_{real}}[\phi(D_v(x))] + \mathbb{E}_{x \sim P_{G_u}}[\phi(1 - D_v(x)))].$$

A mixed strategy for the generator is just a distribution S_u supported on U, and one for discriminator is a distribution S_v supported on V.

Theorem 10 (Mixed Equilibrium)

Then there exists a value V , and a pair of mixed strategies $(\mathcal{S}_u, \mathcal{S}_v)$ such that

 $\forall v, \mathbb{E}_{u \sim S_u}[F(u, v)] \leq V \text{ and } \forall v, \mathbb{E}_{v \sim S_v}[F(u, v)] \geq V$

The wind? F distance and MIX+

Approximate equilibrium

A pair of mixed strategies (S_u, S_v) is an ϵ -approximate equilibrium, if for some value V

$$\forall v \in \mathcal{V}, \mathbb{E}_{u \sim \mathcal{S}_u}[F(u, v)] \leq V + \epsilon; \\ \forall u \in \mathcal{U}, \mathbb{E}_{v \sim \mathcal{S}_v}[F(u, v)] \geq V - \epsilon$$

The wind? F distance and MIX+

Theorem 11

Suppose ϕ is L_{ϕ} -Lipschitz and bounded, the generator and discriminators are L-Lipschitz with respect to the parameters and L'-Lipschitz with respect to inputs, then for any ϵ , there exists $T(\epsilon)$ generators $G_{u_1}, ..., G_{u_T}$ and T discriminators $D_{u_1}, ..., D_{u_T}$, let S_u be a uniform distribution on u_i and S_v be a uniform distribution on v_i , then (S_u, S_v) is an ϵ -approximate equilibrium. Furthermore, in this equilibrium the generator "wins", meaning discriminators cannot do better than random guessing.

The wind? F distance and MIX+

MIX+GAN?

The wind? F distance and MIX+

MIX+GAN? Bayes GAN?

The wind? F distance and MIX+

MIX+GAN? Bayes GAN? TO BE CONTINUE...

The wind? F distance and MIX+

Thanks for your attention!

The wind? F distance and MIX+

For Further Reading

- [1] Filippo Santambrogio. *Optimal Transport for Applied Mathematicians*. Springer, 2015
- [2] Pinsker's inquality
- [3] Lévy–Prokhorov metric