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Main idea

Introducing the theory framework of GAN

Introducing the Wasserstein GAN

Talk about some new work on this topic

Raise some questions
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Generative Model vs Discriminative Model

In order to determine the label y of x :

Discriminative model learns p(y |x) directly.

Generative model
Learns p(x |y) (and p(y)), then use Bayes rule

arg max
y

p(y |x) = arg max
y

p(x |y)p(y).
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Generative Model vs Discriminative Model

Figure 1: Two Gaussian distribution.

CS 229 lecture notes, Andrew Ng.

Yimeng Chen An Introduction to WGAN

http://cs229.stanford.edu/notes/cs229-notes2.pdf
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Classical Generative Model

Classical way to learn a probability density:

Defining a parametric family of densities (pθ)θ∈Rd

Do maximal likelihood estimation on real data samples
{x (i)}mi=1:

max
θ∈Rd

1

m
Σm
i=1 log pθ(x (i))

That’s equivalent to minimize the KL divergence
KL(Pr−emp‖Pθ)
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KL divergence

Definition 1.1 (KL divergence)

KL(Pr‖Pθ) =

∫
log(

pr (x)

pθ(x)
)pr (x)dµ(x)

Asymmetric

When Pθ(x) = 0 and Pr (x) > 0, it is infinite.

Typical remedy is to add a noise component, but it will
degrade the quality of the samples.
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Generative Adversarial Networks

Generator

Noise variable z ∼ pz(z)

Parametric function(NN) G (z; θg ) : Z → X
Discriminator

Parametric function(NN) D(x; θd) : X → [0, 1]

Analogy

Currency Counterfeiters and the Police
Key idea: Policy update
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Objective of GAN

GAN Objective

min
G

max
D

V (D,G ) = Ex∼pdata(x)[logD(x)] + Ez∼pz (z)[log(1− D(G (z)))]

Also a Maximum Likelihood Estimation.

There exists an unique optimal D∗, D∗G (x) = pdata(x)
pdata(x)+pg (x) .
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Optimal D

Under optimal D, the objective function

V (D∗,G ) = Ex∼pdata(x)[log
pdata(x)

pdata(x) + pg (x)
]+Ex∼pg [log

pg (x)

pdata(x) + pg (x)
]

In view of JS divergence, we have

V (D∗,G ) = − log 4 + 2 · JSD(pdata‖pg )

Yimeng Chen An Introduction to WGAN
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JS divergence

Definition 2.1 (JS divergence)

JS(Pr‖Pg ) = KL(Pr‖Pm) + KL(Pm‖Pg ),

Pm = (Pr + Pg )/2

Symmetric

0 ≤ JSD(P‖Q) ≤ log 2

Yimeng Chen An Introduction to WGAN



Generative Model
Generative Adversarial Networks

Wasserstein GAN
GAN with ...

Generative Adversarial Networks
Objective of GAN
JS divergence
Unstability

Training of GAN

D(x; θd)
In every step, use a mini-batch of samples of pdata(x) and
pg (z).

∇θd
1

m

m∑
i=1

[ logD(x(i)) + log(1− D(G (z(i)))) ]

G (z; θg )
In every step, use a mini-batch of samples of pg (z).

∇θg
1

m

m∑
i=1

log(1− D(G (z(i))))
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Questions

Question 1

What’s the difference between the empirical distribution

1

m

m∑
i

δx i

and the distribution we compute in the training of GAN? How
about the real distribution?

Question 2

What’s the relationship between G and D?
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Unstability

Lemma 1 (low dimensionality)

Let g : Z → X be a function composed by affine transformations
and pointwise nonlinearities, then g(Z) is contained in a countable
union of manifolds of dimension at most dimZ.

Lemma 2 (perfectly align)

Let M and P be two regular submanifolds of Rd that don’t have
full dimension. Let η, η′ be arbitrary independent continuous
random variables. We therefore define the perturbed manifolds as
M̃ =M+ η and P̃ = P + η′. Then

Pη,η′(M̃ does not perfectly align with P̃) = 1

Yimeng Chen An Introduction to WGAN
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Unstability

Theorem 3

Let Pr and Pg be two distributions whose support lies in two
manifolds M and P that don’t have full dimension and don’t
perfectly align. We further assume that Pr and Pg are continuous
in their respective manifolds. Then

JSD(Pr‖Pg ) = log 2,

KL(Pr‖Pg ) = +∞,

KL(Pg‖Pr ) = +∞.
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Unstability

Theorem 4 (Vanishing gradients on the generator)

Let G induces Pg . Pr is the real data distribution. Under the same
condition in theorem 3, and when ‖D − D∗‖< ε,
Ez∼p(z)[‖∇θgθ(z)‖2

2] ≤ M2, we have

‖∇θEz∼p(z)[log(1− D(gθ(z)))]‖2< M
ε

1− ε
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Optimal transport distance

Definition 3.0 (Kantorovich problem)

Given µ ∈P(X ), ν ∈P(Y ), and c : X × Y → [0,+∞], we
consider the problem

min{
∫
X×Y

c(x , y)dγ : γ ∈ Π(µ, ν)}

Here Π(µ, ν) is the set of transport plans

Π(µ, ν) = {γ ∈P(X × Y ) : (πx)]γ = µ, (πy )]γ = ν}
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Wasserstein distances

Definition 3.1 (Wasserstein Distances on Ω)

For Ω ∈ Rd , Pp(Ω) := {µ ∈P(Ω) :
∫
|x |pdµ < +∞}

For ∀µ, ν ∈Pp(Ω),

Wp(µ, ν) := min{
∫

Ω×Ω
|x − y |pdγ : γ ∈ Π(µ, ν)}

1
p

Equivalence between the convergence for Wp(p <∞) and for
W1:

W1(µ, ν) ≤Wp(µ, ν) ≤ CW1(µ, ν)
1
p

When p < q, Pp(Ω) ⊂Pq(Ω)

Yimeng Chen An Introduction to WGAN



Generative Model
Generative Adversarial Networks

Wasserstein GAN
GAN with ...

Wasserstein distances
Continuity
Objective of WGAN

Wasserstein distances

Definition 3.1 (Wasserstein Distances on Ω)

For Ω ∈ Rd , Pp(Ω) := {µ ∈P(Ω) :
∫
|x |pdµ < +∞}

For ∀µ, ν ∈Pp(Ω),

Wp(µ, ν) := min{
∫

Ω×Ω
|x − y |pdγ : γ ∈ Π(µ, ν)}

1
p

Equivalence between the convergence for Wp(p <∞) and for
W1:

W1(µ, ν) ≤Wp(µ, ν) ≤ CW1(µ, ν)
1
p

When p < q, Pp(Ω) ⊂Pq(Ω)

Yimeng Chen An Introduction to WGAN



Generative Model
Generative Adversarial Networks

Wasserstein GAN
GAN with ...

Wasserstein distances
Continuity
Objective of WGAN

Wasserstein distances

Definition 3.1 (Wasserstein Distances on Ω)

For Ω ∈ Rd , Pp(Ω) := {µ ∈P(Ω) :
∫
|x |pdµ < +∞}

For ∀µ, ν ∈Pp(Ω),

Wp(µ, ν) := min{
∫

Ω×Ω
|x − y |pdγ : γ ∈ Π(µ, ν)}

1
p

Equivalence between the convergence for Wp(p <∞) and for
W1:

W1(µ, ν) ≤Wp(µ, ν) ≤ CW1(µ, ν)
1
p

When p < q, Pp(Ω) ⊂Pq(Ω)

Yimeng Chen An Introduction to WGAN



Generative Model
Generative Adversarial Networks

Wasserstein GAN
GAN with ...

Wasserstein distances
Continuity
Objective of WGAN

Weak convergence

Definition 3.2 (Total variation)

Denote P(X ) the space of all the probability measures on X .

Total variation norm: For ∀µ ∈ P(X ),
‖µ‖TV = supA⊆X |µ(A)|, A is any Borel set in X .

Total variation distance: For ∀µ, ν ∈ P(X ),
δ(µ, ν) = ‖µ− ν‖TV

Definition 3.3 (The weak-* convergence of probability measures)

For compact spaces X , M(X ) is isomorphic to the dual space of
C (X ). The convergence of M(X ) in duality with C (X ) is weak-*
convergence.
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Relationship

By Pinsker’s inequality [2],

δ(P,Q) ≤ 1

2

√
DKL(P,Q)

On compact subset of Rd [1],

Pn
TV−→ P⇔ Pn

JSD−→ P,

Pn
∗
⇀ P⇔ Pn

Wp−→ P

On separable spaces [3],

Pn
∗
⇀ P⇔ Pn

D−→ P
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Figure 2: vertical vs horizontal
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Continuity

Theorem 5

Let Pr be a fixed distribution over X . Let Z be a random variable
(e.g Gaussian) over another space Z. Let g : Z × Rd → X be a
function, that will be denoted gθ(z) with z the first coordinate and
θ the second. Let Pθ denote the distribution of gθ(Z ). Then,
1. If g is continuous in θ, so is W (Pr ,Pθ).
2. If g is locally Lipschitz and satisfies regularity assumption 1,
then W (Pr ,Pθ) is continuous everywhere, and differentiable almost
everywhere.
3. Statements 1-2 are false for the Jensen-Shannon divergence
JS(Pr ,Pθ) and all the KLs.
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Continuity

Difinition 3.4 (Lipschitz continuity)

Given two metric spaces (X , dX ) and (Y , dY ), a function
f : X → Y is called K-Lipschitz continuous if there exists a real
constant K ≥ 0 such that, for all x1 and x2 in X,

dY (f (x1), f (x2)) ≤ KdX (x1, x2).

Definition 3.5 (locally Lipschitz)

A function is called locally Lipschitz continuous if for every x in X
there exists a neighborhood U of x such that f restricted to U is
Lipschitz continuous.
If X is a locally compact metric space, then f is locally Lipschitz
if and only if it is Lipschitz continuous on every compact subset of
X .
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Continuity

Lemma 6 (Regularity assumption 1)

Let g : Z × Rd → X be locally Lipschitz between finite
dimensional vector spaces, i.e. for a given pair (θ, z) there is a
constant L(θ, z) and an neighborhood U s.t. ∀(θ′, z ′) ∈ U we have

‖gθ(z)− gθ′(z
′)‖ ≤ L(θ, z)(‖θ − θ‖+ ‖z − z ′‖)

We say that g satisfies assumption 1 for a certain probability
distribution p over Z if Ez∼p(z)[L(θ, z)] < +∞
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Continuity

Theorem 7 (Continuity of NNs)

Let gθ be any feed-forward neural network(a function composed by
affine transformations and pointwise nonlinearities which are
smooth Lipschitz functions) parameterized by θ, and p(z) a prior
over z such that Ez∼p(z)[‖z‖] <∞ (e.g. Gaussian, uniform, etc.).
Then assumption 1 is satisfied and therefore W (Pr ,Pθ) is
continuous everywhere and differentiable almost everywhere.
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Duality form of W1

W1(µ, ν) = max{
∫

Ω
ϕdµ−

∫
Ω
ϕdν : ϕ ∈ Lip1(Ω)}

We can let our Discriminator act the role of ϕ.

By the dual form of W1,

W1(Pr ,Pθ) = sup
‖D‖L≤1

Ex∼pr (x)[D(x)]− Ex∼pθ(x)[D(x)]
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Objective of WGAN

Definition 3.7 (Objective of WGAN)

min
G

max
ω∈W

Ex∼pr (x)[Dω(x)]− Ex̃∼pg (x̃)[Dω(x̃)]],

Here W is bounded to a fixed box like [−0.01, 0.01]l . In this way
we restrict D in a compact subset of Rd , to make it Lipschitz.
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Improved Objective of WGAN

min
D

max
G

Ex̃∼pg (x̃)[D(x̃)]−Ex∼pr (x)[D(x)]+λEx̂∼pg (x̂)[(‖∇x̂D(x̂)‖2−1)2]

A differentiable function is 1-Lipschitz if and only if it has
gradients with norm at most 1 everywhere.

The last item is the gradient penalty.
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Questions

Question 3

What is the difference between the Discriminator family and all the
Lipschitz-1 functions? Can the Discriminator represent the optimal
function?
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Section 4

1 Generative Model

2 Generative Adversarial Networks

3 Wasserstein GAN

4 GAN with ...
The wind?
F distance and MIX+
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GAN with the wind?

Theorem 8 (Stricly convex costs)

Given µ and ν probability measures on a compact domain Ω ∈ Rd ,
there exists an optimal transport plan γ for the cost
c(x , y) = h(x − y) with h strictly convex. It is unique and of the
form (id ,T )#µ, provided µ is absolutely continuous and δΩ is
negligible. Moreover, there exists a Kantorovich potential ϕ, and T
and the potentials ϕ are linked by

T (x) = x −∇(h)−1(∇(ϕ(x)))

All the costs of the form c(x , y) = |x − y |p with p > 1 can be
dealt with via Theorem 5.
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GAN with the wind?

W2: Good Geometrical Significance
By theorem 8, when c(x , y) = 1

2 |x − y |2

T (x) = x −∇ϕ(x) = ∇(
x2

2
− ϕ(x)) = ∇u(x).

u(x) is called Brenier’s potential. ϕ is called Kantorovich’s
potential.

Compute via convex geometry method or numerical method
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Geometric generative model

Figure 3: Geometric generative model.
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Wind?

Question 1∗

An empirical distribution...
Is that what we want?

Question 2

What’s the relationship between G and D?
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WGAN is fake

The Answer for the Question 3

The function family in the objective of WGAN is not the same as
the family of Lipschitz-1 function.
The objective of WGAN is not the Wasserstein distance.

A part of answer for the Question 1

Definition of ”Generalization of GAN”.

A kind of answer for the Question 2

Game theory and the equilibrium between G and D
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F distance

Definition 4.1 (F distance)

Let F be a class of functions from Rd to [0, 1] and ϕ be a concave
measuring function. Then the F-divergence with respect to φ
between two distribution µ and ν supported on Rd is defined as

dF ,φ(µ, ν) = sup
D∈F
|Ex∼µ[φ(D(x))] + Ex∼ν [φ(1−D(x))]| − 2φ(1/2)

When φ(t) = t, F-distance is a pseudo-metric(Integral
Probability Metric, IPM)

When φ(t) = log(t) and F = {all functions from Rd to
[0, 1]}, then dF ,φ = JSD.

When φ(t) = t and F = {all 1-Lipschitz functions from Rd to
[0, 1]}, then dF ,φ = W1.
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Neural net distance

Suppose F is the set of neural networks, and φ(t) = t, then the
objective function used empirically in Arjovsky et al. [2017] is
equivalent to

min
G

dF (P̂real , P̂G )

Definition 4.2 (NN distance)

When F is a neural net, we refer dF ,φ as the neural net distance.
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Generalization of GAN

Definition 4.3 (Generalization)

We say a divergence or distance d(·, ·) between distribution
generalizes with m training examples and error ε if for the learned
distribution PG , the following holds with high probability

d(Preal ,PG )− d(P̂real , P̂G ) ≤ ε

JS divergence and Wasserstein distance don’t generalize.

Neural Net distance generalizes.
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Lack of diversity

The neural net distance dNN(µ, ν) can be small even if µ, ν are not
very close.

Theorem 9 (Low-capacity discriminators cannot detect lack of
diversity)

Let µ̂ be the empirical version of distribution µ with m samples.
There is a some constant c such that when m ≤ c, we have that
with high probability

dF ,φ(µ, µ̂) ≤ ε.
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Game theory and equilibrium

For a class of generators {Gu, u ∈ U} and a class of discriminators
{Dv , v ∈ V}, we can define the payoff F (u, v) of the game
between generator and discriminator

F (u, v) = Ex∼Preal
[φ(Dv (x))] + Ex∼PGu

[φ(1− Dv (x)))].

A mixed strategy for the generator is just a distribution Su
supported on U, and one for discriminator is a distribution Sv
supported on V .

Theorem 10 (Mixed Equilibrium)

Then there exists a value V , and a pair of mixed strategies
(Su,Sv ) such that

∀v ,Eu∼Su [F (u, v)] ≤ V and ∀v ,Ev∼Sv [F (u, v)] ≥ V
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Approximate equilibrium

A pair of mixed strategies (Su,Sv ) is an ε-approximate equilibrium,
if for some value V

∀v ∈ V,Eu∼Su [F (u, v)] ≤ V + ε;

∀u ∈ U ,Ev∼Sv [F (u, v)] ≥ V − ε
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Theorem 11

Suppose φ is Lφ-Lipschitz and bounded, the generator and
discriminators are L-Lipschitz with respect to the parameters and
L’-Lipschitz with respect to inputs, then for any ε, there exists
T (ε) generators Gu1 , ...GuT and T discriminators Du1 , ...DuT , let Su
be a uniform distribution on ui and Sv be a uniform distribution on
vi , then (Su,Sv ) is an ε-approximate equilibrium. Furthermore, in
this equilibrium the generator “wins”, meaning discriminators
cannot do better than random guessing.
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...

MIX+GAN?

Bayes GAN?
TO BE CONTINUE...
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Thanks for your attention!
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For Further Reading

[1] Filippo Santambrogio. Optimal Transport for Applied
Mathematicians. Springer, 2015

[2] Pinsker’s inquality

[3] Lévy–Prokhorov metric
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